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Stability of the flow in a differentially 
heated inclined box 

By JOHN E. HART? 
Department of Meteorology, M.I.T., Cambridge, Massachusetts 

(Received 9 June 1970) 

The effect of sloping boundaries on thermal convection is studied theoretioally 
and in the laboratory in the context of a model in which fluid is contained in a 
differentially heated rectangular box of small aspect ratio (depth/length), 
inclined at an angle 6 to the vertical. Like its two limiting cases, B6nard con- 
vection and convection in the vertical slot, a basic state which exists for low 
Rayleigh numbers becomes unsbable as this parameter is increased. The types 
of instability and indeed the manner in which the motions become turbulent 
depend crucially on 6. In  our work with water the following general picture of the 
primary instabilities applies: 

(i) For 90" > 6 > 10" with the bottom plate hotter, the instabilities are sta- 
tionary longitudinal convectively driven rolls with axes oriented up the slope. 
Near 6 = 10" there is an upper and lower Rayleigh number cut off. If the Rayleigh 
number is too small diffusion damps the instabilities, but if it is too large they are 
damped by the development of a stable upslope temperature gradient in the 
mean flow. 

(ii) For 10' > 6 > - 10" (negative angles imply a hotter upper plate), transverse 
travelling waves oriented across the slope are the first instabilities of the mean 
flow. They obtain their kinetic energy via the working of the upslope buoyancy 
force. 

(iii) For - 10" > 6 > - 85" longitudinal modes are again observed. These are 
rather curious in that they may exist when the stratification - 0. V T  is every- 
where positive. The necessary energy for these modes comes out of the mean 
velocity field and out of the mean available potential energy. 

Agreement between the stability theory and the experiments is generally quite 
good over the whole range of 6, considering the approximations involved in 
finding a suitable basic flow solution. 

For Rayleigh numbers less than N lo6 turbulence is only possible for positive 
angles. For 85" 6 > 20" the development of unsteadiness involves the occur- 
rence and the breaking of wavy longitudinal vortices in a manner reminiscent 
of the development of turbulence in cylindrical Couette flow. 

t Present address : D.A.M.T.P., Cambridge University. 
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1. Introduction 
This paper reports on a study of thermal convective flows between differen- 

tially heated sloping plates. The study was originally motivated by a desire to 
find out what effect slope would have on certain thermally driven flows which are 
found in the atmosphere or the ocean. The occurrence of slope heating problems 
is rather common since rarely is the earth’s surface aligned with geopotential 
lines. The problem, as will be formulated shortly, is closely tied up with two others 
which form the classic examples of thermal convection, namely the flows between 
differentially heated horizontal or vertical plates. The horizontal parallel plate 
convection case is well known and includes recent studies of critical motions by 
Davis (1967), Segel (1969) and Koschmieder (1966). The vertical case has a 
non-trivial basic circulation which was given theoretical consideration by 
Batchelor (1954). The same problem has been treated more recently in terms of a 
boundary-layer analysis by Gill (1966). Experiments on the flows in the vertical 
slot have been reported by Eckert & Carlson (1961) and by Elder (1965a,b), 
among others. Flow instabilities exist in this system as both stationary and 
travelling disturbances. The stationary ones have been discussed by Gershuni 
(1953), Rudakov (1967) and Vest & Arpaci (1969) and the travelling ones by 
Rudakov and by Gill & Davey (1969). We mention these instabilities because it is 
important to determine to what extent the instabilities in the slant convective 
case resemble those occurring in either the horizontal or vertical limits. The 
inclined geometry introduces some rather profound phenomena which do not 
occur in either of these limits. 

We consider the thermally driven flow between two perfectly conducting 
plates, separated by a distance D, and maintained at a temperature difference 
AT. In the laboratory it is not convenient to work with open ends since then the 
experiment is susceptible to rather poorly defined recirculation effects of the 
local environment. So instead of considering the ‘infinite’ plate problem we 
choose to look at the motions of a fluid contained in a shallow box inclined a t  an 
angle 6 from the vertical. There has been some previous work on flows in this 
geometry. It seems that DeGraaf & Van der Held (1963) were the first to consider 
the tilted convection problem, and were probably the first to note that a small 
inclination away from 90” serves to break the plan-form degeneracy which 
exists for infinitesimal instabilities in a horizontal convecting layer. As they were 
concerned with measuring the heat flow across the gap they did not offer an 
explanation for the observed longitudinal (oriented upslope) instabilities. 
Kurtweg (1970) considers the stability problem between infinite inclined plates, 
and shows that this problem for the onset of the longitudinal modes is essentially 
that of Rayleigh (1916) with reduced gravity g sin 8. He does not prove that this 
orientation is indeed the most unstable nor why the transverse modes (oriented 
cross-slope) are stabilized. These questions were t o  some degree answered by 
Liang & Acrivos (1970), who did calculations for the flow in a slightly non- 
horizontal infinite channel with free boundaries. They were able to show that the 
longitudinal rolls were indeed the most unstable, and they likened the stabiliz- 
ing of the transverse modes to similar damping which occurs when horizontal 
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convective instabilities are subject to a shear flow (Ingersoll 1966). There, the 
transverse perturbations feed energy into the mean velocity field. This compari- 
son is not correct and it is shown in $6.1 that the transverse convective insta- 
bilities actually gain energy from the basic velocity field. Apparently the only 
authors who have considered the stability of transverse disturbances over the 
whole range of angles are Birikh et al. (1968) and Gershuni & Zhutkovitskii (1969). 
Their calculations are again for the infinite channel. In  order to understand the 
laboratory flows for all 6 one needs t o  consider non-zero aspect ratios (closed 
channels of finite length). The non-zero aspect ratio changes the mean flow 
significantly and makes the problem considerably more complicated and 
interesting. Some new types of instability are discovered which may be of 
considerable importance in mnre general stratified shear flows. 

FIGURE 1. Co-ordinates and geometry for the problem. 

To proceed formally we choose it local co-ordinate system rotated through 6 
with its origin a t  the centre of the box. The tank is constructed with rigid con- 
ducting boundaries at x* = & +D, and with rigid insulating boundaries at 
x* = _+ +H, y* = f @. The walls at  z* = f &D are to be maintained at  a tem- 
perature difference AT. The co-ordinate system and geometry are shown in 
figure 1. On the matter of notation the two possible kinds of heating can be 
achieved either by reversing the temperature difference, or by maintaining the 
direction of the heating, as in figure 1, and allowing IS to go to -90". In  the 
experiments IS  was always positive and the plate temperature had to be reversed, 
but since the negative angle notation is more convenient in the presentation of the 
data we adapt it, noting: (i) if 90" 2 IS > O", the lower plate is hotter; (ii) if 
0" > 6 2 - 90°, the upper plate is hotter. Although we shall use negative angles 
to denote the second case, we stress again that the experiments and numerical 
calculations do not involve 6 c O", and statements like 'overhead view ' should 
be interpreted accordingly. 
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The governing equations are taken to be the Navier-Stokes equations with the 

(1 .1 )  

(1  2)  

v.v = 0. (1.3) 

R,, = ~ Y A T D ~ / K V ,  (1.4) 

Boussinesq approximation. In  non-dimensional form these are 

G,[aV/at) + V .  VV] = - V p  + cos S T B  + sin STB + V2V, 
R,[(GTIat) + V .  V T ]  = V2T, 

Here we have defined the Rayleigh number 

the Prandtl number P, = V / K ,  

and the numbers pertaining to the geometry, the tilt angle 6, and the aspect 
ratios DIL and DIH. We assume DIL --f 0 in this study so that only the one aspect 
ratio h = D/H 

is important. The Grashof number G, = R,/P,. In  the above definitions AT is 
the magnitude of the applied temperature difference, V the velocity vector, T the 
temperature, g the gravitational acceleration, y the coefficient of thermal expan- 
sion, v the kinematic viscosity, and K the thermal diffusivity. Velocities have the 
scale gyATD2/v, lengths D, temperature AT. The boundary conditions are that 
there be no normal flow nor any slip a t  any of the walls, that 

(1.5) 

T = T &  at z = + L  - 2  

and that V T .  12 = 0 at  the other boundaries. 
In  the following sections we shall describe qualitatively what types of motion 

are observed in 6he experiment, and then go on to the theory for some of these 
motions. The theoretical results will then be compared to quantitative experi- 
mental data. 

2. Description of the experiment 
We have attempted to construct an experimental apparatus with appropriate 

velocity and temperature-measuring devices which is in direct correspondence to 
the idealized model. The tilt convection tank consists of two water-jackets each 
backing a precision ground, lcm thick, anodized aluminium plate. The two 
water-jackets are separated by a milled plexiglass spacer such that the region in 
between contains the working fluid. The dimensions of the working volume are 
H = 38.0cm, L = 17.8 em, and with two different spacers D = 1.521 cm and 
D = 1.036 cm. Micrometer measurements indicate that D is uniform to 0.005 em. 
Two aspect ratios are available: h = 0.040 and F, = 0.027. 

Temperatures were measured by matched chromel-constantin thermocouples 
embedded in the plates or immersed in the working fluid. A stabilized nano-volt 
amplifier was used to drive a servo-potentiometer readout device. The system 
was calibrated to 0.01 "C, and fluctuations down to 0-002 "C could be measured. 
With this system it was determined that the plates could be maintained at  
temperatures constant within 0.005 "C or 0*005AT, whichever was larger. The 
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thermal distribution across the plates was typically uniform to 0.01 "C or 
0*01AT, whichever was larger. Measurements in the fluid were for the most part 
accomplished through three variable micrometer-adjustable probes which 
traversed the x axis at y = 0;  x = 7.45 cm, 0 cm, - 7-45 cm. The thermocouples in 
these probes were 0.005 cm diameter, mounted as 1.2 cm cantilevers on 0.08 cm 
ceramic tubing. The probes were fed through the top plate. 

Velocities were measured by photographing dye lines injected at  strategic 
locations in the fluid. These were formed by stimulating a pH transition in a 
titrated solution of thymol blue indicator, a method which has been described by 
Baker (1966). 

Of the parameters, R, was measured within 2-6 yo, with the higher limit for 
R, < 2000. 6 could be set within 0.12'. Unless otherwise noted the experiments 
were all done with water, P, = 6-7. The working fluid was outgassed and the 
thermocouple system calibrated before each run. 

3. Qualitative observations of the various flow rkgimes 
In order to get a general idea of the motions possible in this tilted geometry, we 

ran a series of experiments in which the top water-jacket was replaced with one 
which had a glass plate in place of the usual aluminium boundary surface. This 
enabled us to obtain a plan view of the circulations in the box by looking straight 
down through the upper bath. We took pictures, from this overhead view, of an 
aqueous suspension of ground fish-scales illuminated from the side by a colli- 
mated slit lamp. The first experiments were done with S = 90" and with the 
bottom plate heated. In  all these experiments where the Rayleigh number is 
slowly increased there is at  first a primary state of motion followed by a series of 
secondary motions, then unsteadiness, and ultimately turbulence. The primary 
state for S = 90" is known to be one of no motion, with a temperature distribution 
linear in x .  Figure 2(a) (plate 1) shows the plan-form just above the well-known 
critical Rayleigh number, 1708. The secondary motion is in the form of rolls 
oriented parallel to the nearest side. The lateral boundaries apparently have an 
effect on the mode selection, as has been observed in a wider selection of geo- 
metries by Koschmieder. Davis (1967) has discussed the stability problem, 
including lateral walls, and the results agree qualitatively with our observations. 
Unsteadiness sets in around R, = 50000, although a secondary striation struc- 
ture appears on the rolls below this, near R, = 20000. These effects have recently 
been discussed in more detail by Krishnamurti (1970). 

At non-horizontal tilt angles the mode structure is rather different. There are 
no longer any transverse rolls, oriented parallel to the y axis. As the Rayleigh 
number is increased the first instabilities are completely longitudinal, oriented 
in the 2 direction. These modes are superimposed on a primary flow which has a 
non-zero velocity field. Because of the buoyancy component up the slope a 
single cell circulation is induced, with fluid flowing up the hot plate and down the 
cold one. Figure 3(a )  (plate 2) shows how the primary instabilities develop for 
S = 60" (the top boundary of the photograph is the most elevated end of the 
box). As the Rayleigh number is increased (figures 3(b)-(d), plate 2 )  one notices 
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the appearance of meanders on the longitudinal vortices. These grow to large 
amplitude as in figure 3(c) (plabe 2), break, and eventually a state of violent 
unsteady mixing is reached (figure 3 (d ) ) .  At this tilt angle, unsteadiness occurs 
at  a Rayleigh number much lower than that required for violent unsteadiness in 
the horizontal convective case. The turbulence does not appear to be isotropic, 
the plumes being elongated in the x direction. 

At 6 = 20" the situation is somewhat similar. Longitudinal rolls are still the 
preferred mode of instability (figure 4 ( a ) ,  plate 3) .  At higher Rayleigh numbers 
there are intermittent periods of meanderings, but instead of leading to turbu- 
lence, steady states with higher wave-numbers ensue. This transition process is 
evident in figures 4 (b) ,  (c )  (plate 3). Surprisingly, at  this tilt angle the fluid 
cannot be driven to convective turbulence. As in figure 4 (d )  the rolls just disap- 
pear and the steady two-dimensional unicellular mean motion is all that remains 
at high R,( < lo6). 

\ 
105 I- (High wave-number) Unsteady 

cells 

I 'i 
R, Striated cells Unsteady 

i 104k%- Meanders / ( L ~ ~  
Bgnard %-,_--A* 

rectangular Longitudinal rolls wave-number) 
planform 

I 
lo6. Roll dominated turbulence Transver: 

(High (Low 
travelling wuv c.y 

wave-number)- wave-number) t 
unicell 

90 60 30 0 - 30 - 60 - 90 

6" 
FIGURE 6.  Sketch of rdgimes of motion. 

Near 6 = 0" the first instabilities are transverse travelling waves which are not 
easily visualized by this method. They are discussed in detail in $07 and 8. 

When the upper plate is hotter the flow at R, 5 lo5 is again a two-dimensional 
unicell. At sufficiently large R, longitudinal instabilities are again observed. 
Figure 5 (plate 4 )  contains photographs of 3 cases, a t  different tilt angles. 
Instability occurs at  very large negative angles, where one would intuitively 
expect the tank to be convectively stable. 

From the information obtained from the visual study we have constructed a 
rough sketch of the types of motions in the tilt convection tank. Figure 6 contains 
this sketch. The centre-line is for 6 = 0". To the left is the convectively unstable 
case. The left-hand boundary represents the familiar BBnard problem. The rough 
location of the transition points are included in the solid and dashed lines. The 
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remainder of this paper is an attempt to describe the events more quantitatively 
and to answer the questions that arise from the visual study. Some of this, it 
turns out, can be done theoretically. The preceding qualitative observations 
suggest that the more complicated regimes arise from instabilities of the uni- 
cellular flow. In  the next three sections we consider a model of the basic circula- 
tion as determined from the velocity and temperature measurements, and the 
theoretical bounds on the stability of this model flow to different types of 
perturbations. The results of the linear stability theory are compared to more 
exact experimental results in 0 8. 

4. The primary circulation 
4.1. A parallel $ow solution 

In  this section we seek a mathematical description of the steady two-dimensional 
(2, z )  basic flow in the sloping box. The equations governing this type of motion 
are obtained from (1.1)-(1.3) with a/at = ajay = 0. Then, denoting this basic 
flow with a subscript zero, we have 

G,(uouo, + wo u o z )  = -poz + cos + V2uo, (4.1) 

G,(uo woz + wo woz) = - poz + sin ST, + V2wo, (4.2) 

uoz+wo* = 0, (4.3) 

and Ru(uo To, + wo TO$) = V2T0. (4.4) 

There exists a parallel flow solution (where uo = ' i i (z)) of these equations. Under 
the assumption, to be discussed later, that the cross-stream buoyancy force 
sin ST, is unimportant for the mean circulation we find that 

To = px + F(z )  (4.5) 

and uo = U ( Z ) )  (4.6) 

- = - (sin Mz cosh Mz tan iM/tanh 4M + cos M z  sinh M z )  
Z[(tan +M sin &M Gosh +M/tanh $M + cos $M sinh $ M )  ' where (4.7) 

cos 6 (cos Mz sinh Mz tan BMltanh BM - sin Mz cosh Mz) 
and 

U=-- 4M2 (tan $M sin +M cosh +M/tanh +M + cos $M sinh 4M) ' (4.8) 

This ' advective ' solution depends on the parameter 

M = [$Rucos6/3]) (4.9) 

and on the arbitrary constant p. 
Equations (4.5)-(4.9) represent an exact solution to the full non-linear 

governing equations for 6 = 0") provided the conducting walls are maintained at 
To = px T 4. The no-slip condition at z = 5 + is satisfied. This solution was 
originally suggested by Elder (1965) and a discussion of its physical implications 
is contained there also. Vest & Arpaci (1969) andGill & Kirkham (1970) have both 
used the above as a model base flow for studying the stability of fluidmotionin the 
vertical slot. Of course the solution does not satisfy the isothermal wall boundary 
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conditions inherent in the experiments of Elder and Vest & Arpaci (and also 
our own), but the above authors extend the results from their stability calcula- 
tions based on this solution to the experiments, under the tacit assumption that 
for small p it is a good approximation to what actually occurs near the centre of 
the apparatus. The experiments show that p is O(h)  (as we shall see in figure 8) 
so this asfiumption may be a good one for small aspect ratios. But in view of the 
well-known fact that stability equations of the Orr-Sommerfeld type can be 
quite sensitive to the shape of the mean profiles, we shall devote the next section 
to a detailed comparison of this parallel flow theory with our laboratory measure- 
ments of the mean circulation. 

It should be noted that as M tends to zero, the mean fields described above 
tend to the ' conduction ' solution which has 

U = (COS 6/6) (z3 - &) (4.10) 

and To = -2. (4.11) 

This is the exact solution for the buoyancy driven flow between infinite dif- 
ferentially heated isothermal plates. The stability of this flow has been studied 
recently by Birikh et aZ. (1968) and by Gershuni &, Zhukovitskii (1969), and in 
principle these results can be appIied directly to the experiments provided R, 
and h are small enough that the conductive limit is accurate. Unfortunately the 
calculations published by these authors do not include P, = 6.7. 

4.2. Comparison with the experiments 

We concentrate on the region - 0.4 < xh < 0.4, since ib is here that the instabili- 
ties are observed to develop. A dye line induced along y = x = 0 shows that 
wo = 0 except within regions of U(D) from the ends. This observation, coupled 
with the velocity profile data, taken a t  the three thermocouple traverse points 
($2),  which show that uo is independent of x to within 5 %, indicate that the 
parallel flow assumption is probably fairly good. The second assumption was thaO 
the cross-stream buoyancy is unimportant. From the y vorticity equation this 
means that 

which can be anticipated on theoretical grounds provided cotS/h 1. The 
validity of this argument will be tested by seeing to what extent the measured 
profiles depend upon the reduced Rayleigh number, R, cos 6, alone. 

The theory predicts a constant upslope temperature gradient. Figure 7 shows 
some temperature traverses taken along y = x = 0. It is seen that over the region 
of interest the dependence is linear with x. The magnitude of the upslope gradient 
pis not given by the simple theory of the previous section, so we have determined 
it empirically by measuring the gradient at x = y = z = 0. The results are shown 
in figure 8. For tilt angles greater than - 70" the development of Ph-l occurs in a 
similar manner, rising from zero a t  R,cos S z 1 x lo4 to a value near 0.6 for 
R, cosS > 5 x lo4. This rise evidently marks the transition between the con- 
ductive and the advective behaviour of the mean flow. For 6 < -70°, /3h-1 
deviates from a pure dependence on the reduced Rayleigh number. That) this 

COt6Toz/Toz 9 1, 
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should happen is consistent with the breakdown of the assumed neglect of the 
cross-stream buoyancy force. At these almost horizontal angles cot 6/h is no 
longer large with respect to one, and blocking in the corner regions becomes more 
efficient, with tongues of cool (warm) fluid penetrating into the central regions 

FIGUR 

i7 
cos 6 
__ 

-0.5 0.5 
z 

10. Some corn 

0.01 

arisons of typical velocity profiles with the theory (solid lines) 
calculated a t  the values of M shown. The points are for: (a) M = 5.7, 6 = 0"; ( b )  M = 4.4, 
6 = 0"; (c) M = 3.1, 6 = -75'; (d )  M = 2.4, 6 = -60"; ( e )  M = 1.0, 6 = 0'. 

from the lower (upper) corners. The blocking regions form because of the cross- 
stream buoyancy and are not expected to be the same for positive and negative 
angles. The theory for the mean flow in a slightly non-horizontal box (Hart 1971) 
shows that the blocking effect is only important for negatives angles. In  terms of 
instabilities and turbulence the region 6 < - 70" is of lesser interest. 

We now compare the theory with the profile measurements at  x = y = 0. The 
data were obtained by taking temperature traverses and by making use of the 
dye wire technique. Figure 9 (plate 5) shows a typical dye trace in the region 
where the mean flow is 'advective'. Note the tendency towards a stagnant layer 
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near x = 0. The velocity data taken from photographs like this are believed to be 
accurate to better than 5 % .  The values of p necessary for the theory were 
obtained from the solid line of figure 8. Typical comparisons are shown in figure 
10. The velocity profiles fit the theory fairly well, but it was found that almost 
always the observed velocities were smaller than those in the theoretical profiles, 
except for small M ,  where the agreement is excellent (case e) .  As seen from the 
other four cases, the data do fit the predicted velocity distributions much better if 
these are calculated with an increased value of the parameter M .  

- 0.5 0.5 

FIGURE 11. Some comparisons of observed temperature profiles with the theory (solid 
lines) calculated with the values of M shown. The points are the data for: (a)  M = 5.7, 
6 = 0"; ( b )  M = 4.3, 6 = 0"; (c) M = 2.3, 6 = -60"; (a) M = 2.0, 6 = 0". 

A similar situation seems to exist for the temperature distributions. Figure 
11 shows some typical cases. As opposed to the velocity distributions the tempera- 
ture profiles are not symmetric about z = 0. It is thought that this is due to the 
presence of the entry port which guides the probe into the working fluid through 
the wall at z = - 0.5. It is apparent that the variation of fluid properties with 
temperature does not play any role here, for if the temperature difference is 
reversed the non-symmetry still appears in the same sense as before. Since it is 
present for 6 = 0' it could not be due to the neglect of the cross-stream buoyancy 
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either.? If we consider the temperature data for positive z, again we find that for 
experimental cases with small M the data agree with the theory but for larger 
values the best fit is obtained with a theoretical curve calculated with a slightly 
larger M .  

8- 

7 -  

6 -  

5 -  

Ph-I 4 - 

3 -  

2 -  

1 -  

R, . cos 8 

FIGURE 12. Summary of all the profile data. The plot shows the M which gives the best 
theoretical fit to the data, for each experimental case. , temperature, 8 > - 75"; x , 
velocity, 8 > - 75"; 0, velocity, 8 < - 75"; y ,  temperature, 8 < - 76'. 

In  figure 12 we summarize the comparison between the theory and all the 
velocity and temperature data. For Mexp 2 2 the data all fit the theoretical 
curves if M is related to Mexp by M = 1.09MeXp. The points at 6 < - 70" require 
rather higher M ,  consistent with the increase in the upslope temperature gradient 
observed a t  these high angles. That the theory consistently overestimates the 
observed fields when Mexp is large enough to be out of the conductive r6gime 
(e.g. M > 2) probably reflects the fact that the theory fails to reduce the upslope 

t In fact the effect of this buoyancy term can easily be included in the solution (4.5)- 
(4.8). The main contribution is t o  add a small correction tan 8/32 to the mean temperature 
field, but this has the disadvantage of giving a multiparameter theory which is more 
difficult to fit to the data. 
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temperature gradient to zero on the walls. This overestimate by the theory shows 
up to a certain degree in Elder's (1965a) work also. 

5. The linear stability problem 
We wish to determine the values of R,, h, P,, and 6 for which the mean fields 

specified by (4.5)-(4.9) become unstable to infinitesimal-amplitude perturbations. 
The mean fields are to be calculated with values of p which are empirically 
determined from the data (figure 8). We take 

/3 = 0 for R,cosS < lo4, 

p = 0*87(log R, cos 6- 4) h for lo4 < R, cos S < 5.2 x lo4, 

p = 0.62h for R, cos S > 5.2 x lo4. 
In  view of the mean flow measurements we take M = 1.O9(Ra cos S The 
governing equations (1*1)-(1*3) are linearized about U and To. We obtain, with 
primes denoting the perturbations, 

GT(u; + U U ~  + w'U~)  = -pg + cos 6 T' + V~U',  (5.1) 

G,(vi + Uv;) = -p;+ V2V' , (5.2) 

GT(w; + iiw;) = -p~+sinST'+V2w', (5.3) 

Ra(T;+UT~+w'q+d/3) = V2T', (5.4) 

u::+v;+w;= 0. (5 .5)  

Since h and D/L are very small we can write all variables as 

assuming that the perturbations will not be significantly affected by the sidewalls. 
There is no Squire's theorem for these perturbations. One can eliminate u, 
p and v from (5.1)-(5.3)' obtaining, with d = d/dz and k2 = k:+ki, 

(5.6) (d2 - k2)2w - iGr[(k2Z- w )  (8- k2)w - k2Ezzw] - k2 sin T - ik, cos SdT = 0. 

The thermal equation is 

(d2 - k2)T - iR,[ ( k 2 E  - w )  TI - R, w c  - R, u/3 = 0. (5.7) 
The above two equations apply to arbitrary orientation, but we still need to 

specify u(w, T ) .  For k,  = 0 (transverse waves) 

For k ,  = 0 (longitudinal rolls) 
u = idw/k,. (5-8) 

(5.9) (a2- k2)U + cos 6T - G T w G z + i G , ~ ~  = 0. 

These are the only two cases in which the original set may be reasonably simplified. 
Fortunately these two 'simplest' cases describe just those modes which we 
observe, and we will leave the discussion of oblique modes for another time. For 
the simple conductive profile Gershuni & Zhukovitskii have shown that the 
oblique modes are never the most unstable. 

We must solve the appropriate sets of equations subject to boundary conditions 
at the walls. For the experimental situation these are rigid and highly conductive. 
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We must have u = w = d w = T = O  a t  x =  t.4. 
The kinetic energy balance for the perturbations is 

(a/at)$(u'2+ v f2  + w f 2 )  = cos ~ ( u ' T ' )  +sin 6(w'Tf )  

- GT<:r(U.'W';llZ) - (VU'2 f VV'2 f VW'2), 

with brackets defining the average in x and over one spatial cycle. 
The numerical solution is based on the Galerkin method (Mikhlin 1964 is a 

comprehensive reference). The variables are written in N-term expansions of 
complete orthogonal trial functions satisfying the appropriate boundary con- 
ditions. The methods and trial functions we have used are essentially those of 
Gallagher & McD. Mercer (1965). For the transverse modes, governed by (5.6)- 
(5.8), we obtain a 2N x 2N real matrix eigenvalue problem. For longitudinal 
modes (5.6), (5.7) and (5.9) lead to a 3Nx 3N problem. The accuracy of the 
eigenvalue w is tested by increasing N and requiring that: (i) IwN+l - wNI -+ 0; 
(ii) the coefficients of the eigenfunctions converge in the above sense; (iii) the 
energy distribution balances. In  some cases the computation can be considerably 
shortened by assuming w = 0, and finding R,(6, P,, h, k) such that the residual 
determinant of the matrix is zero. 

- 1  104 I 

1 1 1 1 1 1 1  

I - 30 - 60 

6" 

FIGURE 13. Critical Rayleigh numbers for the onset of infinitesimal disturbances. The solid 
lines are for the conductive limit, the dashed line has h = 0.04. 

Figure 13 contains the critical (neutral) curves for Rayleigh number as a 
function of 6. The solid line is for h = 0.0001, which effectively means that the 
base flow corresponds to the conductive solution for all R,. The dashed curve is for 
h = 0.04. It is seen that almost all of the lowest or most unstable modes are 
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stationary. The only travelling disturbances are for the larger aspect ratio, the 
larger Prandtl number, and exist only near 6 = 0'. Away from this region the 
longitudinal instabilities (k, = 0)  are the most unstable. The remaining stationary 
transverse modes fall basically into two categories. Near 6 = 90" they are con- 
vective, the perturbations deriving most of their energy from the unstable 
temperature field. However, for 6 < 60" the energy comes primarily out of the 
mean shear in the centre of the channel. The curves for h = 0, k, = 0, 0,. = 0 are 
similar to those of Birikh et al. (1968), who did calculations for P, = 1 and 5. 

6. Discussion of the theoretical results 
There is merit in giving some theoretical interpretation of the instabilities 

since the mean flow used is an exact solution to the full Navier-Stokes equations, 
under conditions specified in $4.1. If, for example, we did not use experimental 
data to connect p to R, and 6, we would have a purely theoretical problem with 
an extra parametier. This sort of approach has been taken recently by Birikh 
et al. (1969), for 6 = 0. In  our study we treat pas a dependent variable and confine 
our attention to the most unstable mode. 

6.1. Stationary transverse convective modes 
We begin by discussing the behaviour of the solutions in the convective region 
90" 2 6 2 60". A value of N = 12 was sufficient to ensure numerical accuracy in 
the critical values of 1 yo, along with energy convergence of the same order. We 
have solved the complete eigenvalue problem for certain test cases in this region 
to show that in fact the most unstable mode has o, = 0. In  figure 13 it is seen that 
the longitudinal modes are the most unstable in this region. The reasons for this 
behaviour become apparent when we consider the kinetic energy balance for 
these modes. Table 1 contains the results. We have defined e, = dissipation, 
e, = upslope conversion = COS~(U'T'), e, = cross-stream conversion = sins 
(o'T'), e, = transfer = - (~'w';iia>G,. 

The longitudinal modes all have the same energy distribution as the 6 = 90" 
case. The only kinetic energy generation for them is through the action of the 
cross-stream buoyancy force. At 6 = 78" and 6 = 66") P, = 6.7, it is seen that 
some small part of the kinetic energy of the transverse modes is actually supplied 
from the mean shear. This is in marked contrast to solutions of Ingersoll(l966) 
and others on convective instabilities in a plane horizontal Couette flow. There, 
transverse modes were stabilized by the mean motion. In our case the w o r m  
against the upslope buoyancy is the effective stabilizing agent. The mechanisms 
by which these energy transformations come about are seen quite simply if we 
look a t  the eigenfunctions. 

Figure 14 shows the isothermals and the stream function for 6 = 78". At 
horizontal tilt the updrafts are vertical and are associated directly with the 
maxima of the temperature field. When the walls slope the updrafts still try to 
flow vertically, in the direction of the total buoyancy force. Relative to the 
boundaries this means that the streamlines must tilt into the mean shear. This is 
seen in figure 14, where the mean velocity field is up (9) the bottom plate and 
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down the top. Thus the natural tendency of the flow to be in the direction of 
gravity causes the cell to take energy out of the mean velocity field. The damping 
is brought about by the phase shift in the thermal field; for example, when a hot 
plume, in order to complete a cell, must move downwards against the slope. Since 
the degree of shear interaction is roughly inversely proportional to the Prandtl 
number, cases with P, = 0.71 should be more unstable than say P, = 6.7. In  the 
calculations of Gershuni & Zliukovitskii this effect is magnified to the point that 
transverse modes are the most unstable for P, = 0.2. 

R a  8 p ,  h ev e, e.2 eI 

1708 90" 6.7 0.0001 -1.000 0.0 1.000 0.0 
1849 78' 6.7 0*0001 - l * O O O  -0.0239 1'0239 0'0005 
3360 66" 6.7 0.0001 - 1.000 -0.2241 1.2222 0.0018 
1824 78" 0.71 0.0001 - 1.000 -0.016 1.003 0'013 
2697 66" 0.71 0.0001 - 1.000 -0.107 0.986 0.119 

TABLE 1. Energy balance for the stationary transverse convectivo modes 

J 5 

FIGURE 14. Contours of stream function (upper) and temperature (lower) 
with P ,  = 6.7, h = 0.0001, 6 = W ,  R,, = 1849. 

6.2. Stationary transverse shear modes 

In  this section we discuss the behaviour of modes with w = k, = 0 which exist for 
6 less than about 60'. These are shear instabilities, getting most of their energy 
from the mean velocity field. The neutral curves (calculated with N = 12) are 
shown in figure 13 for h = 0.0001. The associated wave-numbers are 2-79 almost 
independent of 6. From table 2 it is seen that for P, = 6.7, h = 0.0001, some 
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80 yo of the kinetic energy of the perturbations come out of the mean shear. For 
P, = 0.71 this figure is of order 90 %. 

For 6 = 0" Vest & Arpaci (1969) find that there is no ( < 0.5 %) dependence of 
the critical curves on Prandtl number of P, from zero to lo3. Their method was 
essentially the same as the present one except they used smaller expansions with 
N = 3. We have found a slight dependence on P, which is consistent with the 
energy calculations which indicate a sizeable contribution from e, and e,. 

Gr s P r  h ev eU e, eI 

7860 0" 6.7 0.0001 -1.000 0.199 0.0 0.790 
8027 0" 0.71 0.0001 -1.000 0.060 0.0 0.927 
7558 22" 0.71 00001 -1.000 0.022 0.103 0.874 

TABLE 2. Energy balance for the stationary shear driven modes 

RG 6 p r  h eV eu ec eI 

88900 0" 6.7 0.04 -1.000 1.130 0.0 -0.123 
61900 17" 6.7 0.04 -1.000 0.995 0.118 -0.108 

113000 -18" 6.7 0.04 -1.000 1.175 -0.052 -0.127 

TABLE 3. Energy balance for the transverse travelling modes 

FIGURE 15. Contours of stream function (upper) and temperature for the 
transverse stationary mode with Pr = 0.71, h = 0.0001, and 8 = 22". 

36-2 
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Figure 15 shows contours of perturbation stream function and isotherms for 
one case. The instability is centred about the plane z = 0. The energy transfer is 
primarily from the shear at the centre of the slot. 

When we make calculations for h = 0.027 (thereby entering the advective base 
flow r6gime) we find that for P, = 0.71 the eigenvalues are nearly the same as 
before. At P, = 6.7, h = 0.027 no solutions were found. Similar behaviour was 
noted by Vest & Arpaci, who stated that this absence of solutions was probably 
numerical.? The situation actually has a real physical basis which is not apparent 
in their remarks about the numerics. Figure 16 shows what happens as we take 
succcssively larger (but still small) values of h, at 6 = 0". The critical curves form 

Gr __ 
104 

3.0 - 

2.5 - 

2.0 - 

k2 

FIGURE 16. Neutral curves (Ra(k2) )  for stationary transverse modes 
as a function of h, with P,  = 6.7. 

closed loops with smaller internal areas as h becomes larger. Linear instabilities 
are only possible inside these loops and it is clear that instabilities can only exist 
for a finite range of G, above onset. Indeed above h = 0.009 or so these stationary 
modes just do not exist. This behaviour comes about physically because the 
mean profiles depend non-linearly on P, and h. For these shear modes the critical 
parameter is Gr, and since they are centred and stationary, instability occurs when 
the Reynolds number near z = 0 is large enough. The profiles develop according 
to the value of G,P,h. But if this is large (au,/&)l,,, tends to zero. Therefore as 
G, is raised instability will only be possible at large P, if h is small enough. Of 

t Vest & Arpaci only looked a t  the case with 6 = wi = wI. = 0 and they erroneously 
neglected the last term of equation (5.7). 
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course these are rather crude physical arguments which naturally cannot include 
all that is described by the instability equations themselves, but the predictions 
are consistent with the numerical solutions. 

6.3. Transverse travelling modes 

The absence of growing stationary transverse disturbances a t  a Prandtl number 
of 6.7, for h = 0.04, suggested that we look for travelling modes. These calcula- 
tions were done with N = 14. The eigenvalues are believed to be accurate to 2 yo 
or so. Some of the results are in figure 13 and others, including critical wave- 
numbers and frequencies, in $8. We note that the critical Rayleigh number 
increases as the tank becomes more convectively stable (&+ - 90"). E'or the values 
of P, and h used here the phase speeds are slightly lower than the maximum 
velocities of the mean profiles. 

\ 7  

FIGURE 17. Contours of stream function and temperature for 
8 = 17", P, = 6.7 a d  h = 0.04. 

These modes cannot be called shear instabilities because they attain most of 
their kinetic energy via the conversion of upstream potential energy (see table 3). 
Because of the energy balance it is reasonable to suppose that these disturbances 
will be affected significantly by changes in the Prandtl number or in the tilt 
angle. The critical curves show that these modes are significantly more affected 
by these parameters than are the stationary modes of the previous section. Gill & 
Davey (1969) have discussed this type of buoyancy mode, which occurs in the 
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flow up a single heated vertical wall in a stratified fluid. This flow is approxi- 
mately what one gets along one wall in the vertical slot provided R,h is la,rge 
enough. They also find modes which are dominated energetically by e?(.  ‘rhe 
authors have tried to apply their results t o  the slot problem. For P, = 6.7, 
h = 0-04 their critical Rayleigh number is approximately R, = 1.07 x lo3. This is 
considerably lower than the available experimental results, including those in the 
present study. It is clear that the boundary-layer flow model is not applicable at 
the values of R,, P,, and h, at which the instabilities are observed. Contours for 
our ‘two-wall’ solution are shown in figure 17. Although the isotherms are 
concentrated along the wall, the stream pattern reaches clear across the gap. The 
added damping caused by the stress on the opposite wall and by the effect of the 
reverse flow probably is why our critical Rayleigh number at  6 = 0 of R, = 

8.89 x 104 is considerably higher than Gill & Davey’s. 

6.4. Longitudinal modes 

In  this section we discuss modes which have k, = 0 and hence are oriented 
parallel to the B axis. We concentrated our calculations on the case w, = 0 (al- 
though full calculations do indicate that this is indeed true for the most unstable 
modes). The calculation were done on the M.1.T.-I.B.M. 360 computer, which led 
to an upper limit of N = 5, and accuracy in the critical values estimated at  3 %. 

The longitudinal modes are interesting in that there are many different st,abi- 
lizing and destabilizing mechanisms inherent in the equations, all of which may 
influence the onset points for a specific set (P,, h, 6). So before presenting the 
results which involve the complicated base flows and rigid boundaries, we 
present a brief discussion of these mechanisms. The equations for the neutral 
stability of the longitudinal modes are obtained from (5.6), (5.7), (5.9) by setting 
k, = w, = 0. We find 

(6.1) 

(6.2) 

(6.3) 

The only source of energy for the rolls (w,  w part of the instability) is the conversion 
from cross-stream potential energy. To have these longitudinal modes one must 
have 

(a2 - k2)2 w - k2 sin ST = 0,  

(d2- k2jT - R , w ~  - Rap% = 0, 

(d2 - k2)u -I- COB 6T - C, wT& = 0. 

sins/’ wTdz > 0, (6.4) 
-t 

a fact which may be obscured if the total kinetic energy balance is written down. 
The energy sources for cross-stream and upslope motions are rather different, but 
since the dynamics are coupled there are many feedback mechanisms which can 
satisfy (6.4). These mechanisms exist primarily because the temperature field 
can be generated by advection from either the complicated cross-stream gradient 

or from the constant upslope gradient p. 
Consider an updraft with w > 0, generated by a positive temperature pertur- 

bation T > 0. This will tend to generate vorticity. How can the motion sustain 
itself ‘1 In the usual Rayleigh convection problem the positive perturbation is 
regenerated by advection of temperature from the unstable mean field with 
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p8 < 0 somewhere. If > 0 everywhere no such regeneration can occur and the 
motion is stable. In  the present problem, however, the positive perturbation in 
can also be reinforced by adveetion from the mean upslope thermal field ,Ox. Here 
p is positive and feedback will occur oiily if u is negative. If the parameters are 
right, shear generated upslope velocity can cause longitudinal convective 
instabilities, even if the cross-stream temperature field is completely stable. The 
longitudinal vortieity is still driven convectively , but it is the mean shear 

kl 

4.0 5.0 6.0 7.0 8.0 9.0 
I , I I 

105 

R a  

l(r 

lo! I 
I 

30 20 10 0 
if" 

FIGURE 18. Neutral curves R, (solid) and k, (dashed) with if > Oo, P ,  = 6.7, 
for the most unstable even and odd modes. 
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generated part of the total kinetic energy which allows regeneration. Naturally 
with our mean fields the solutions will contain all the above effects in complicated 
ways. 

Figure 18 shows the results for P, = 6.7, S > 0". The solid curves are the critical 
Rayleigh numbers. The h = 0.0001 curve is just Kurtweg's simple solution 
R, = 17081 sin 6. The curve labelled * is the purely convective problem based on 
p(z).? This case is just slightly more stable than the pure conductive-profile 
limit and just reflects the growth of a stable layer in T as M becomes large. Both 
these cases are quite different from the solutions for the complete problem, 

I I I I I I I I 

6" 
- 30 - 60 -90 

FIGURE 19. Neutral curves for R, and k, calculated for 6 > O", P ,  = 6.7. 
See text for explanation of cases (a) and ( b ) .  

shown for h = 0.027 and h = 0.04. Energy must be put into the mean upslope 
(stable) temperature stratification. The wave-numbers increase with Rayleigh 
number as more efficient release of cross-stream potential energy is needed to feed 
this transformation. 

Figure 19 shows the stability curves for P, = 6.7, h = 0.04, with 6 < 0". Curve 
(a) is again the purely convective problem.? Curve (a )  is the complete solution. 

t For this we have arbitrarily set p = 0 in equation (6.3). This decouples the instabilities 
from the mean velocity field. 
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The critical Rayleigh numbers behave in a similar way but the wave-number 
curves are entirely different. For case (b )  instability is possible as a negative 
temperature gradient develops in 2?,. This is necessarily a small fraction of the 
gap so one would expect the associated wave-numbers to be large as they are. 
For the complete problem the wave-numbers decrease markedly as 6 decreases. 

T,  Uzx102 ~ ~ 1 0 4  ~ ~ 1 0 3  - W ~ x ~ ( r  -u,4x104 

T* U , X ~ O ~  ~ ~ 1 0 )  T -wT=x loz - U ~ X  104 

0 2 - 2 0 0 2  0 1 - 1 0  -4 0 

I I 

L 3 1 
(b) 

FIGURE 20. Solutions for P,  = 6.7, h. = 0.04, with 6 = -17' in (a) 
and S = -60' in (b) .  

This suggests that the direct convective instabilify may exist near 6 = Oo, but 
that the shear coupled modes, which tend to have smaller wave-numbers, may 
exist as the tilt tends towards horizontal. This is suggested also by the energy 
distributions in table 4. At low angles e, is small but at  large angles there is a large 
transfer of kinetic energy from the mean to the upslope velocity. In  figure 20 
(which shows the eigenfunction at  a fixed phase) longitudinal vorticity is generated 
only at  the centre of the tank. The thermal excess that exists there for 6 = - 17" 
comes out of the advection of the cross-sbream component of the basic stratifica- 
tion. For S = - 60" the mean temperature gradient is nowhere negative, the 
cross-stream temperature field is everywhere stabilizing. However, at these 
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angles the effectiveness of the upslope buoyancy is reduced and through the 
advection term in (6.6) it is possible to have u negative where T is positive. Hence 
for these large negative angles the shear coupled mode predominates. 

One would suspect that a t  low P, the shear would be very important and the 
indirect convective instability with its low wave-numbers would prevail. At 
high P, instability would only involve the reverse gradient in and would have 
larger wave-numbers. This is shown in figure 21 which presents results from some 
calculations for various Prandtl numbers. In air instability occurs a t  a low 
Rayleigh number with a long wavelength. At large P, the instability may ap- 
proach a condition which is essentially independent of P, as it would if it became 
purely convective. Table 5 shows some preliminary data taken from our streak 
photographs which tends to verify these ideas. 

i/ i' .O 

FIGURE 21. Neutral curves for R, and k, as functions of the Prandtl number 
at 6 = -45". 

R a  6 p, h ev e" e C  eI 

341,000 -17' 6.7 0.04 -1.000 0.958 0.042 -0.001 
167,200 -60" 6.7 0.04 - 1.000 0-186 0.195 0.623 
401,000 -81" 6.7 0.04 - 1.000 0.018 0.280 0.701 

26,980 -45" 0.71 0.04 -1.000 -0.191 0.009 1.190 
135,000 -45" 6.7 0.04 -1.000 0.396 0.136 0.425 
5 . 1 2 ~  lo6 -45" 25 0.04 -1.000 0.923 0.100 0.050 

TABLE 4. Energy balance for the stationary longitudinal modes 
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p ,  6 Ra k R,(theory) k(theory) 

6.7 -45" 1.31 x lo6 3.72 1.49 x 105 3.55 
24 -45" 1 . 5 2 ~  lo5 5.28 1.92 x lo6 5.61 

TABLE 5 .  Some experimental data for 6 > 0 

7. Quantitative measurements of the transition points 
As the theory was being developed we were trying to make more precise 

measurements of the events observed in the streak photographs. Of course the 
glass wall was replaced with the ground aluminium one for this. It was first veri- 
fied that there were no stationary transverse modes. These were looked for a t  
6 = 85", 60", 30°, lo", 0", - 10' and - 30", by increasing AT slowly until the 
Rayleigh number was above that required for one of the other types of distur- 
bance. We used (i) photographs of streak lines taken looking in along z = z = 0, 
(ii) photographs of longitudinal dye pulses initiated along y = z = 0, (iii) tempera- 
ture profiles taken along y = z = 0. In  none of these measurements was there any 
evidence of the stationary transverse modes. 

Longitudinal modes were detected by looking for waves in a dye pulse initiated 
along x = x = 0. A run was started by slowly increasing AT ( < 0.1°/20 min) and 
taking photographs every minute from a slightly oblique angle as end-on 
photography was impossible because of the opacity of the dye. An optical coding 
arrangement put the applied temperature difference in each picture so that the 
many hours of data could be scanned through and the onset points determined. 
Figure 22 (plate 6) shows a typical visualization of onset, along with one end- 
view streak photograph of the longitudinal rolls which occur for 6 < 0. 

The travelling modes were detected by looking for oscillations in the thermo- 
couple output of a probe at s = y = 0, z = -0.4. One can alternatively look a t  
dye lines, but because these modes are so weak dye-line observations generally 
lead to onset parameters three or four times higher than those obtained from the 
temperature records with a sensitivity of 0.002 "C. The measurements were 
automated by placing the probe signal on axis Y ,  and the applied temperature 
difference AT signal on axis X of an X- Y recorder. Before onset a thin slanted line 
is traced out as each voltage reflects the changing mean conditions. After onset 
the Y-axis oscillates rapidly and a triangular wedge is formed. The onset is 
detected as the apex of the wedge. The wavelengths and frequencies of these 
modes were determined by correlating the signals from two probes displaced in x. 

8. Comparison of stability data and theory 
The measurements of the instability points are accurate to better than 6 % 

in R, and t 0.5' in 6. However, we must always be prepared to admit that the 
actual onset points may be below the finite amplitude events which we see, but we 
hope that our measurements are sufficiently sensitive that we are indeed very near 
the infinitesimal onset points. 
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With this in mind we present figures 23-28, which compare the available 
measurements with the theoretically calculated critical parameters. First of all it 
should be noted that the theory successfully predicts the absence of any sta- 
tionary transverse modes for S 5 90". Outside of this the agreement is rather 
good, especially when one considers the complexity of the mean fields. Figures 23 
and 24 show the critical Rayleigh numbers for 8 > 0". Figure 25 contains the 
critical data for S < 0". Generally the theory here overestimates the onset of the 
longitudinal modes, but the shape is reproduced, with cut-offs near the hori- 
zontal andverticalpositions. Considering that these modes are especially sensitive 
to the x-dependent part of the temperature field (that part which the mean flow 
theory fails to reduce to zero at  the walls), it would have been somewhat sur- 
prising if the agreement were exact, 

Unstable 

+ 

/ 

90 80 70 60 50 40 30 20 10 0 
6" 

FIGURE 23. Theory (solid) and experimental points for transition to  longitudinal (0) and 
transverse (+) disturbances for h = 0.027, P ,  = 6.7. The dashed curve is the theory 
obtained by assuming the conductive limit throughout. 

Figures 26 and 27 contain the wave-number data for the h = 0.04 longitudinal 
modes. The error bars here reflect variations in individual roll wavelengths 
across the tank, which may be due to slight non-linearities or to sidewalls. They 
give the maximum excursions from the average (represented by the point) of 
6 or 7 measurements. The theory predicts wave-numbers which are quite 
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consistent with the data. The evolution to low wave-numbers as 6 tends to 
- 90" indicates strongly the existence of the instability mechanism which allows 
for coupled convective-shear instabilities in the presence of everywhere positive 
vertical temperature gradients. 
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FIGURE 24. Theory and experimental points for transition to longitudinal ( 0 )  and 
to transverse (+)  modes for k = 0.04, P ,  = 6.7. 

The theory underestimates the onset of the transverse travelling modes by as 
much as 80 yo. Part of this may be due to the difficulty associated with detecting 
these very weak fluctuations, but probably some of it is due to the approximate 
base flow itself since these modes are especially sensitive t o  the shape of the mean 
profiles. Also, inherent in both the theory and the technique of measurement was 
the assumption of a parallel base flow. The real flow is not exactly parallel, and 
while the longitudinal modes seem to onset uniformly about x = 0, the travelling 
mode transition point seems to depend weakly on x. It is not clear at this time how 
significant the quasi-parallel assumption is for these modes. The theory again 
reproduces the general observed features, including the observed frequencies and 
wave-numbers. 

We originally conducted the linear stability analysis in order to understand the 
physical basis for the rather peculiar behaviour of the experimentally observed 
instabilities. To this end our effort, especially for the longitudinal modes, was very 
successful. The chief difficulties in applying this, the usual sort of a stability 
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FIGURE 
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so 
FIGURE 25. Theory and experimental points for transition to longitudinal 

( ) and to  transverse ( x ) modes for h = 0.04, P,  = 6-7, 6 < 0". 

26. 

k k 

0 2.0 4.0 6.0 8.0 10.0 
R, x 10-4 

Critical wave-numbers for the longitudinal instabilities with 
P, = 6.7. The solid curve is from the theory. 

0 2.0 4.0 6.0 8.0 10.0 
R, x 10-4 

Critical wave-numbers for the longitudinal instabilities with 
P, = 6.7. The solid curve is from the theory. 

6 >  0", h = 0.04, 
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analysis, to the data is that the quasi-parallel assumption, as applied both to the 
basic flow and to the perturbations, is not completely rigorous. Perhaps higher- 
order corrections could be added to the present theory but it looks as if this would 
be a very complicated endeavour. If one wished to pursue the question of these 
types of instabilities further, it would probably be easier to  design an experiment 
for which the present base flow is exact, namely by constructing a tank with a very 
small aspect ratio h, with walls maintained at  To = px T 4. 

6" 

FIGURE 27. Critical wave-numbers for longitudinal instabilities with 6 < O", h = 0.04, 
P,  = 6.7. The solid curve is from the theory. 

3.0 

- 9  

k 

1.0 - 

I 1 I I I 

20 10 0 - 10 - 20 
6" 

F ~ a m  28. Wave-numbers (+) and frequencies (0 )  for the transverse travelling mo des 
observed at h = 0.04, P, = 6.7. The solid curves are from the theory. 

This work was part of a Ph.D. thesis submitted to the M.I.T. Meteorology 
department. The author would like to thank Prof. E. Mollo-Christensen for his 
encouragement and helpful suggestions throughout the course of this work. He 
would also thank Mr Ed Bean, Mr Jimmy Mazzarini and Mr Ken Morey for help 



576 J .  E. Hart 

with the technical aspects of the experimental apparatus. Many thanks are also 
due to N.C.A.R. for making their excellent computing facility available for the 
production runs. The program testing was done a b  the M.I.T. computation centre. 
The work was sponsored by A.P.O.S.R. under contract AF49(638)-1493. 

R E F E R E N C E S  

BAKER, D. J. 1966 J. Fluid Mech. 26, 573. 
BATCHELOR, G. K. 1954 Q w t .  Appl. Math. 12, 209-233. 
BIRIKH, R. V., GERSHONI, G. Z., ZHUKHOVITSKII, E. M. & RUDAEOV, R. N. 1968 Prikl. 

BIRIKH, R. V., GERSWNI, G. Z., ZHWHOVITSKII, E. M. & RUDAEOV, R. N. 1969 Prikl. 

DAVIS, S. H. 1967 J. Fluid Mech. 30, 465-478. 
DEGRAFF, J. G. A. & VAN DER HELD, E. F. M. 1953 Appl. Sci. Res. A3, 393. 
ECKERT, E. R. G. & CARLSON, W. 0. 1961 Int. J .  Heat & Mass Transfer, 2, 106120. 
ELDER, J. W. 1965a J .  Fluid Mech. 23, 77-98. 
ELDER, J. W. 19656 J .  Fluid Mech. 23, 99-111. 
GALLAGHER, A. & McD. MERCER, A. 1965 Proc. Roy. SOC. A286, 117-128. 
GERSHUNI, G. Z. & ZHUKHOVITSKII, E. M. 1969 Prikl. Mat. i Mekh. 33, 855. 
GILL, A. E. 1966 J. Fluid Mech. 26, 515-536. 
GILL, A. E. & DAVEY, A. 1969 J. Fluid Mech. 35, 775-778. 
GILL, A. E. & K ~ K H A M ,  C. C. 1970 J .  Fluid Mech. 42, 125-127. 
HART, J. E. 1971 in preparation. 
INGERSOLL, A. P. 1966 Phys. Fluids 9, 682-689. 
KOSCHMIEDER, E. 1966 Be&. Phys. Atmos. 39, 1-11. 
KRISHNAMURTI, R. 1970 J. Fluid Mech. 42, 295-321. 
KURTWEG, V. H. 1970 J. Heat Transfer, 14, 190. 
LIANG, S. F. & ACRIVOS, A. 1970 Int. J. Heat & Mass Transfer, 13, 449. 
M~KHLIN, S. G. 1964 Variational Methods in Mathematical Physics. New York: Pergam- 

mon. 
RAYLEIGH, L. 1916 Phil. Mag. 32, series 6. 
RUDAKOV, R. N. 1967 Prikl. Mat. i Mekh. 31, 349-355, 
SEUEL, L. 1969 J. Fluid Mech. 38, 203-224. 
VEST, C. M. & ARPACI, V. S. 1969 J .  Fluid Mech. 36, 1. 

Mat. i Mekh. 32, 256-263. 

Mat. i Mekh. 33, 958. 



Journal of Fluid Mechanics, Vol. 47, part 3 

HART 

FIGURE 2. Photographs from the visual study with S = go", h = 0.027. 
(a )  R, = 1900, ( b )  R, = 21600. 

Plate 1 

(Facing p .  576) 
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FIGURE 3. Photographs from the visual study with 8 = 60", h = 0.027. 
(a)  R, = 4232, ( b )  R, = 6186, (c) R, = 7650, ( d )  R, = 11400. 

Plate 2 
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FIGURE 4. Photographs from the visual study with 6 = Z O O ,  h = 0.027. 
(a )  R, = 1.17 x 104, ( b )  R, = 2.29 x 104, (c )  R, = 1.02 x 106, ( d )  R, = 1.22 x 106. 
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FIGURE 5 .  Photographs from the visual study with h z 0.04. (a)  R, = 1.84 x 105,s = - 300, 
( 6 )  R, = 1.89 x lo5, S = -Boo, (c) R, = 3.42 x lo5, S = - 75". 
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FIGURE 9. Photograph of a dye streak induced along x = y = 0 in the unicellular 
regime with R, = 3.6 x lo4, S = OD, P, = 6.7 and h = 0.04. 
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FIGURE 22. Cases (a)-(c) show the onsct of the longitudinalrnode a t  8 = 12.5". The Rayleigh 
numbers are conseqiitively 8328, 8854 and 9750. Case (d )  is an end view stroak photo- 
graphs of the longitudinal rolls a t  R, = 234000, & = - 75'. 
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